X1, X2, ..., ×10

 $= \frac{X_1 + X_2 + \cdots + X_{10}}{10}$

Section 6.5: Average Value of a Function

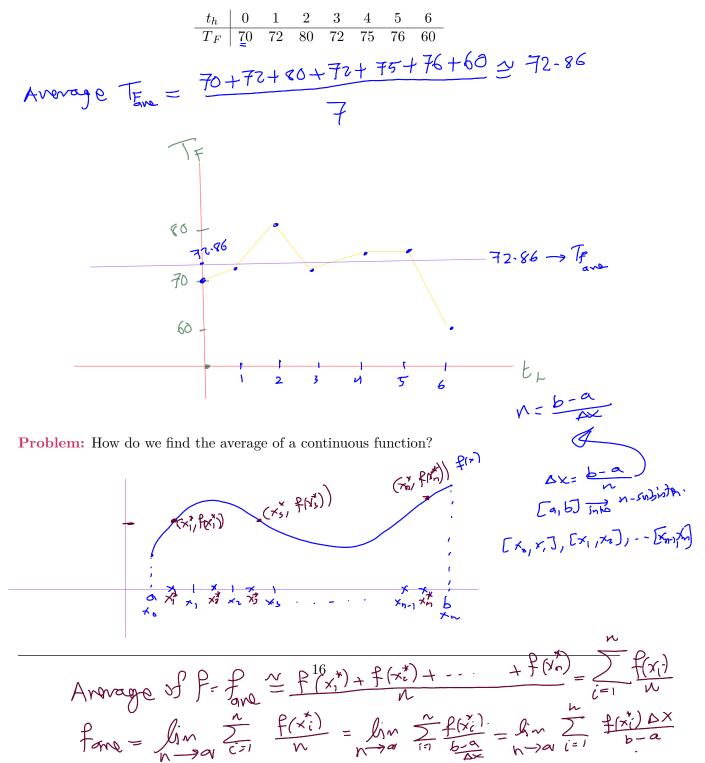
Objective: In this lesson, you learn

□ How to define the average value of a continuous function on an interval and to establish the Mean Value Theorem for Integrals.

I. Average Value of a Function

It is easy to calculate the average of finitely many numbers, but how about the average of numbers in a set containing infinitely many elements?

Example 1: Calculate the average temperature, <u>*t*-time in hours</u> and <u>*T*-temperature in Fahrenheit?</u>



$$= \lim_{n \to a} \frac{1}{b-a} \sum_{i=1}^{n} f(x_i^*) \Delta x = \lim_{b \to a} \lim_{n \to a} \sum_{i=1}^{n} f(x_i^*) \Delta x$$

. .

If we want to find the average of a function y = f(x), $a \le x \le b$.

- 1. First, divide the interval [a, b] into n sub-intervals of equal length $\Delta x = \frac{b-a}{n}$.
- 2. Then choose samples points x_1^*, \cdots, x_n^* in each sub-interval and calculate the average of the numbers

$$f\left(x_{1}^{*}\right) + \dots + f\left(x_{n}^{*}\right)$$

as

$$[f(x_1^*) + \dots + f(x_n^*)]/n.$$

Since $\Delta x = \frac{b-a}{n}$, $n = (b-a)/\Delta x$, so the average value becomes

$$\frac{f(x_1^*) + \dots + f(x_n^*)}{\frac{b-a}{\Delta x}} = \frac{1}{b-a} \left[f(x_1^*) \,\Delta x + \dots + f(x_n^*) \,\Delta x \right] = \frac{1}{b-a} \sum_{i=1}^n f(x_i^*) \,\Delta x.$$

3. As n increases, we are computing the average value of a large number of closely spaced values. Thus, the limiting value is

$$\lim_{n \to \infty} \frac{1}{b-a} \sum_{i=1}^{n} f\left(x_i^*\right) \Delta x$$

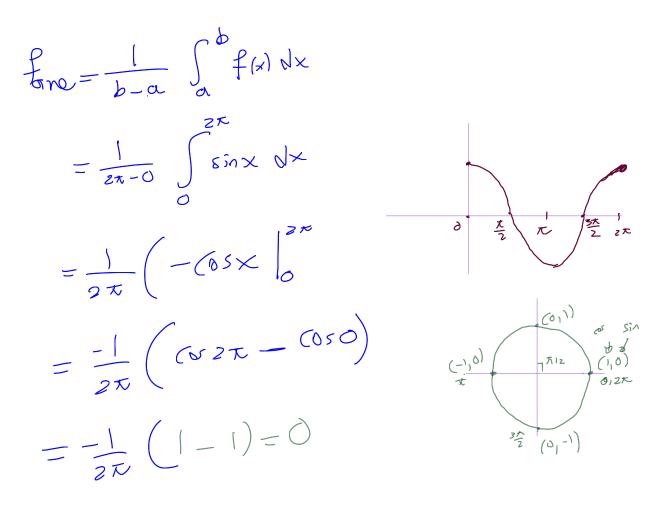
the limit of a Riemann sum, so it is equal to

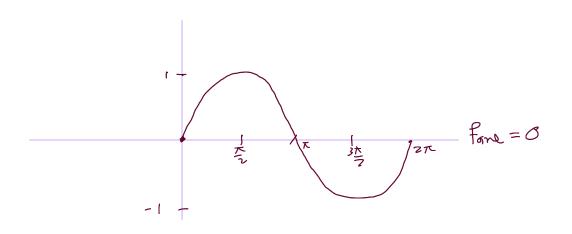
$$\frac{1}{b-a}\int_{a}^{b}f\left(x\right)dx.$$

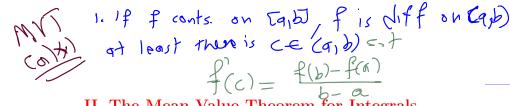
Therefore, we define **the average value** of f on the interval [a, b] as

$$f_{ave} = \frac{1}{b-a} \int_{a}^{b} f(x) \, dx$$

Example 2: Find the average value of $f(x) = \sin x$ for $0 \le x \le 2\pi$?







II. The Mean Value Theorem

The next question is whether there is a specific number c in [a, b] at which, $f_{ave} = f(c)$. The following theorem illustrates that the answer to the above question is affirmative for a continuous function.

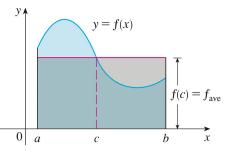
Theorem

If f is continuous on [a, b], then there exists a number c in [a, b] such that

$$f(c) = f_{ave} = \frac{1}{b-a} \int_a^b f(x) \, dx$$

that is, $\int_a^b f(x) dx = f(c)(b-a)$.

The geometric interpretation of the Mean Value Theorem for Integrals is that for positive functions f, there is a number c such that the rectangle with base [a, b] and height f(c) has the same area as the region under the graph of f from a to b.

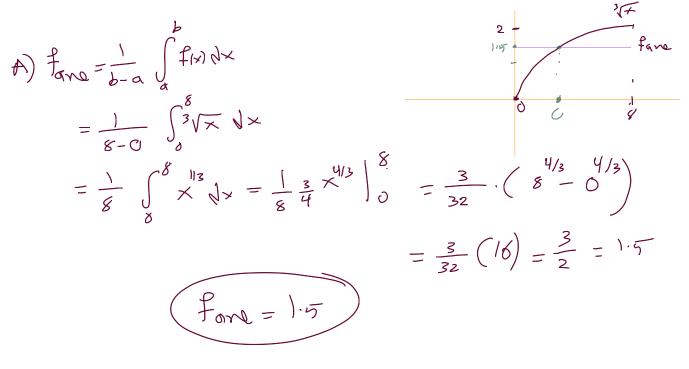


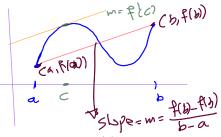
Example 3: Consider the function $f(x) = \sqrt[3]{x}$ on [0, 8]

A) Find the average value of f on the given interval?

B) Find c such that $f_{ave} = f(c)$?

C) Sketch the graph of f and a rectangle whose area is the same as the area under the graph f?





(2)
$$f(c) = f_{and}$$

 $(3\sqrt{c})^{3} = (1.5)^{3}$
 $c = (1.5)^{3} = 3.375$

<u>Check:</u> $f(c) = f((1.5)^3) = \sqrt{(1.5)^3} = 1.5 = fane.$

